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TOPICS

The Nature and History of Software

Development

Problems with Software Development

Software Engineering Paradigms and

Technology
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SOFTWARE ENGINEERING PARADIGMS

l Life Cycle

l Prototyping Model

l Spiral Model

l Fourth Generation Techniques

l Combining Paradigms

l Generic Paradigm
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Generic Paradigm

1.  DEFINITION PHASE
l System Analysis
l Software Project Planning
l Requirements Analysis

2.  DEVELOPMENT PHASE
l Software Design
l Coding
l Software Testing

3.  MAINTENANCE PHASE
l Correction
l Adaptation
l Enhancement
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SOFTWARE ENGINEERING
TECHNOLOGY

l What is Software Engineering?

l Software Engineering Capability and Its

Measurement

l Ada Technology
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What Is Software Engineering?

Methods

l Analysis

l Design

l Coding

l Testing

l Maintenance

Procedures

l Project Management

l Software Quality Assurance

l Software Configuration Management

l Measurement

l Tracking

l Innovative Technology Insertion

Computer-Aided Software Engineering  (CASE)

l Tools which support the Methods  and  Procedures
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Software Engineering Capability
and Its Measurement

l The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

m Predict the amount of time required to develop a software

artifact

m Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

m Predict the cost of developing a software artifact

l The process  and the technology  go hand in hand.

l One method of measurement is the Capability Maturity Model for

Software  developed by the Software Engineering Institute.
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Process Maturity and Technology
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Key Process Areas by Level
Level 2 (Repeatable)

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management
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Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management
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Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management
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Key Process Areas by Level
Level 3 (Defined)

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews



Software Engineering  

  1 - 20  

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews
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Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews
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Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews
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Key Process Areas by Level
Level 4 (Managed)

l Process Measurement and Analysis

l Quality Management
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Key Process Areas by Level
Level 5 (Optimizing)

l Defect Prevention

l Technology Innovation

l Process Change Management
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Ada Technology
l Ada   is a computer programming language specifically designed to

support software engineering.

l Some of Ada's features include:

m All of the normal constructs for looping, branching, flow control,
and subprogram construction

m Support for enumeration types, integers, floating point, fixed point,
characters, strings, arrays, records, and user-defined data types

m Support for algorithm templates (called generics) which allow
algorithms to be expressed without concern for the kind of data on
which the algorithm is applied

m Support for interrupts and concurrent processing

m Support for low-level control, such as memory allocation

l Ada is a design  language as well as a programming  language.

l Ada is designed to be read by Ada programmers and non-
programmers.
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Ada Technology, Continued

Ada
Specification

with System;

package Sensor is

  type Device is private;

  -- Abstract concept of a sensor

  procedure Define (S : in out Device;

    Where : in System.Address);

  -- Associate a sensor with memory

  function Read(S : in Device)

       return Integer;

  -- Return sensed value

private

  -- details omitted

end Sensor;
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Ada Technology, Continued

l From the software engineering perspective, Ada helps by acting
as something much more than a programming language; Ada can
be used as a common language for communicating:

m Some aspects of the requirements

m Some aspects of the design

m All aspects of the code

l In particular, by using Ada as a design language,  code is simply
realized as a complete, detailed elaboration of a design.

l For large, multi-person teams, Ada can be used as an exact,

precise way to communicate requirements and design information
-- often in a form which may be syntactically checked by a
compiler.  Ada is much better than conventional English in this
regard.


