
Software Engineering

 1 - 1

TOPICS

The Nature and History of Software

Development

Problems with Software Development

Software Engineering Paradigms and

Technology

Software Engineering

 1 - 2

SOFTWARE ENGINEERING PARADIGMS

l Life Cycle

l Prototyping Model

l Spiral Model

l Fourth Generation Techniques

l Combining Paradigms

l Generic Paradigm

Software Engineering

 1 - 3

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Life Cycle

Software Engineering

 1 - 4

Life Cycle, Continued
System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Is this model realistic?

Software Engineering

 1 - 5

Prototyping Model

Requirements
Gathering and

Refinement

Quick
Design

Building the
PrototypeEvaluation

of the

Prototype

Refining the
Prototype

Engineer the
Product

Start

Stop

Software Engineering

 1 - 6

Spiral Model
Planning Risk Analysis

EngineeringCustomer Evaluation

Go/ No Go
Decision

Initial

Require-

ments

Gathering

and

Project

Planning

Planning

Based on

Customer

Comments

Evaluations

Risk Analysis

Based on Initial

Requirements

Risk Analysis

Based on

Customer

Reaction

Initial Prototype

Nth-Level Prototype

Engineered

System

Toward a
Completed

System

Start

Software Engineering

 1 - 7

Fourth Generation Techniques

Requirements
Gathering

"Design"
Strategy

Implementation
Using 4GL

Testing

Software Engineering

 1 - 8

Combining Paradigms
Preliminary Requirements Gathering

Requirements

Analysis

Prototyping 4GT Spiral

Model

Design

Coding

Testing

4GT

Prototyping

Nth Iteration

4GT

Spiral

Model,

Nth Iteration

Operational System

and Maintenance

Software Engineering

 1 - 9

Generic Paradigm

1. DEFINITION PHASE
l System Analysis
l Software Project Planning
l Requirements Analysis

2. DEVELOPMENT PHASE
l Software Design
l Coding
l Software Testing

3. MAINTENANCE PHASE
l Correction
l Adaptation
l Enhancement

Software Engineering

 1 - 10

SOFTWARE ENGINEERING
TECHNOLOGY

l What is Software Engineering?

l Software Engineering Capability and Its

Measurement

l Ada Technology

Software Engineering

 1 - 11

What Is Software Engineering?

Methods

l Analysis

l Design

l Coding

l Testing

l Maintenance

Procedures

l Project Management

l Software Quality Assurance

l Software Configuration Management

l Measurement

l Tracking

l Innovative Technology Insertion

Computer-Aided Software Engineering (CASE)

l Tools which support the Methods and Procedures

Software Engineering

 1 - 12

Software Engineering Capability
and Its Measurement

l The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

m Predict the amount of time required to develop a software

artifact

m Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

m Predict the cost of developing a software artifact

l The process and the technology go hand in hand.

l One method of measurement is the Capability Maturity Model for

Software developed by the Software Engineering Institute.

Software Engineering

 1 - 13

Increasing
Process
Maturity

Initial - Ad hoc;

unpredictable

Repeatable - Costs,

Schedules managed

Defined - Process

institutionalized

Managed - Process

measured/controlled

Optimizing - Process

refined constantly

Software Engineering

 1 - 14

Process Maturity and Technology

PROCESS MATURITY LEVELS

TECHNOLOGY
STAGES

Inefficient

Advanced

Initial

Repeatable

Defined

Managed

Optimizing

Risk

Higher
Risk

Inefficient

Target

Ideal

Transition

Path

Software Engineering

 1 - 15

Maturity Keys

Maturity Levels

Key Process Areas

Key Practices

Key Indicators

Process
Capability

Expected
Outcomes

Common
Key Features

are composed of

indicate

are estimated byhave or

lack

determineare

structured

by

Software Engineering

 1 - 16

Key Process Areas by Level
Level 2 (Repeatable)

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 17

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 18

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 19

Key Process Areas by Level
Level 3 (Defined)

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 20

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 21

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 22

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 23

Key Process Areas by Level
Level 4 (Managed)

l Process Measurement and Analysis

l Quality Management

Software Engineering

 1 - 24

Key Process Areas by Level
Level 5 (Optimizing)

l Defect Prevention

l Technology Innovation

l Process Change Management

Software Engineering

 1 - 25

Ada Technology
l Ada is a computer programming language specifically designed to

support software engineering.

l Some of Ada's features include:

m All of the normal constructs for looping, branching, flow control,
and subprogram construction

m Support for enumeration types, integers, floating point, fixed point,
characters, strings, arrays, records, and user-defined data types

m Support for algorithm templates (called generics) which allow
algorithms to be expressed without concern for the kind of data on
which the algorithm is applied

m Support for interrupts and concurrent processing

m Support for low-level control, such as memory allocation

l Ada is a design language as well as a programming language.

l Ada is designed to be read by Ada programmers and non-
programmers.

Software Engineering

 1 - 26

Ada Technology, Continued

Ada
Specification

with System;

package Sensor is

 type Device is private;

 -- Abstract concept of a sensor

 procedure Define (S : in out Device;

 Where : in System.Address);

 -- Associate a sensor with memory

 function Read(S : in Device)

 return Integer;

 -- Return sensed value

private

 -- details omitted

end Sensor;

Software Engineering

 1 - 27

Ada Technology, Continued

l From the software engineering perspective, Ada helps by acting
as something much more than a programming language; Ada can
be used as a common language for communicating:

m Some aspects of the requirements

m Some aspects of the design

m All aspects of the code

l In particular, by using Ada as a design language, code is simply
realized as a complete, detailed elaboration of a design.

l For large, multi-person teams, Ada can be used as an exact,

precise way to communicate requirements and design information
-- often in a form which may be syntactically checked by a
compiler. Ada is much better than conventional English in this
regard.

